Faithfulness of Actions on Riemann-Roch Spaces
نویسندگان
چکیده
منابع مشابه
Riemann-Roch spaces of some Hurwitz curves
Let q > 1 denote an integer relatively prime to 2, 3, 7 and for which G = PSL(2, q) is a Hurwitz group for a smooth projective curve X defined over C. We compute the G-module structure of the RiemannRoch space L(D), where D is an invariant divisor on X of positive degree. This depends on a computation of the ramification module, which we give explicitly. In particular, we obtain the decompositi...
متن کاملConstant dimension codes from Riemann-Roch spaces
Some families of constant dimension codes arising from Riemann-Roch spaces associated to particular divisors of a curve X are constructed. These families are generalizations of the one constructed by Hansen [7].
متن کاملRiemann-Roch Spaces and Linear Network Codes
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal number of points for curves of their respective genera. Linear network coding transmits information in ...
متن کاملDecomposing Representations of Finite Groups on Riemann-roch Spaces
If G is a finite subgroup of the automorphism group of a projective curve X and D is a divisor on X stabilized by G, then we compute a simplified formula for the trace of the natural representation of G on the Riemann-Roch space L(D), under the assumption that L(D) is “rational”, D is nonspecial, and the characteristic is “good”. We discuss the partial formulas that result if L(D) is not rational.
متن کاملModular representations on Riemann-Roch spaces: computational aspects
4 The general curve case 13 4.1 Bounds on the size of the irreducible submodules of L(D) . . . 13 4.2 Borne’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.1 Computing the ramification module . . . . . . . . . . . 15 4.2.2 A formula for the multiplicity . . . . . . . . . . . . . . 16 4.3 Examples: good characteristic . . . . . . . . . . . . . . . . . . 17 4.4 Examples: bad ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2015
ISSN: 0008-414X,1496-4279
DOI: 10.4153/cjm-2014-015-2